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1 Uniqueness Theorem

In this section, we will prove uniqueness theorem for electrodynamic problems.
Assume that there exist two solutions in the presence of one set of common
impressed sources Ji and Mi. Namely, these two solutions are Ea, Ha, Eb, Hb.
Both of them satisfy Maxwell’s equations and the same boundary conditions.
Then, considering general anisotropic inhomogeneous media, where the tensors
µ and ε can be complex so that lossy media can be included, it follows that

∇×Ea = −jωµ ·Ha −Mi (1.1)

∇×Eb = −jωµ ·Hb −Mi (1.2)

∇×Ha = jωε ·Ea + Ji (1.3)

∇×Hb = jωε ·Eb + Ji (1.4)

By taking the difference of these two solutions, we have

∇× (Ea −Eb) = −jωµ · (Ha −Hb) (1.5)

∇× (Ha −Hb) = jωε · (Ea −Eb) (1.6)

Or alternatively, defining δE = Ea −Eb and δH = Ha −Hb, we have

∇× δE = −jωµ · δH (1.7)

∇× δH = jωε · δE (1.8)

The difference solutions satisfy the original source-free Maxwell’s equations.
By taking the left dot product of δH∗ with (1.7), and then the left dot

product of δE∗ with the complex conjugation of (1.8), we obtain

δH∗ · ∇ × δE = −jωδH∗ · µ · δH
δE · ∇ × δH∗ = −jωδE · ε∗ · δE∗ (1.9)

Now, taking the difference of the above, we get

δH∗ · ∇ × δE− δE · ∇ × δH∗ = ∇ · (δE× δH∗)
= −jωδH∗ · µ · δH + jωδE · ε∗ · δE∗ (1.10)
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Figure 1:

Next, integrating the above equation over a volume V bounded by a surface
S as shown in Figure 1. Two scenarios are possible: one that the volume V
contains the impressed sources, and two, that the sources are outside the volume
V . After making use of Gauss’ divergence theorem, we arrive at

¨
V

∇ · (δE× δH∗)dV =

‹
S

(δE× δH∗) · dS

=

˚
V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV (1.11)

And next, we would like to know the kind of boundary conditions that would
make the left-hand side equal to zero. It is seen that the surface integral on the
left-hand side will be zero if:1

1. If n̂×E is specified over S so that n̂×Ea = n̂×Eb, then n̂× δE = 0 or the
PEC boundary condition for δE, and then2‚

S
(δE× δH∗) · n̂dS =

‚
S

(n̂× δE) · δH∗dS = 0.

2. If n̂ ×H is specified over S so that n̂ ×Ha = n̂ ×Hb, then n̂ × δH = 0 or
the PMC boundary condition for δH, and then

1In the following, please be reminded that PEC stands for “perfect electric conductor”,
while PMC stands for “perfect magnetic conductor”. PMC is the dual of PEC. Also, a fourth
case of impedance boundary condition is possible, which is beyond the scope of this course.
Interested readers may consult Chew, Theory of Microwave and Optical Waveguides.

2Using the vector identity that a · (b× c) = c · (a× b) = b · (c× a).

3



ECE 604, Lecture 29 Mon, April 1, 2019

‚
S

(δE× δH∗) · n̂dS = −
‚

S
(n̂× δH∗) · δEdS = 0.

3. If n̂×E is specified over S1, and n̂×H is specified over S2 (where S1∪S2 = S),
then n̂×δE = 0 (PEC boundary condition) on S1, and n̂×δH = 0 (PMC bound-
ary condition) on S2, then the left-hand side becomes‚

S
(δE× δH∗) · n̂dS =

˜
S1

+
˜

S2
=
˜

S1
(n̂× δE) · δH∗dS
−
˜

S2
(n̂× δH∗) · δEdS = 0.

Thus, under the above three scenarios, the left-hand side of (1.11) is zero,
and then the right-hand side of (1.11) becomes˚

V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV = 0 (1.12)

For lossless media, µ and ε are hermitian tensors (or matrices3), then it can be
seen, using the properties of hermitian matrices or tensors, that δH∗ ·µ ·δH and
δE · ε∗ · δE∗ are purely real. Taking the imaginary part of the above equation
yields ˚

V

[−δH∗ · µ · δH + δE · ε∗ · δE∗]dV = 0 (1.13)

The above two terms correspond to stored magnetic field energy and stored
electric field energy in the difference solutions δH and δE, respectively. The
above being zero does not imply that δH and δE are zero.

For resonance solutions, the stored electric energy can balance the stored
magnetic energy. The above resonance solutions are those of the difference solu-
tions satisfying PEC or PMC boundary condition or mixture thereof. Therefore,
δH and δE need not be zero, even though (1.13) is zero. This happens when
we encounter solutions that are the resonant modes of the volume V bounded
by surface S.

Uniqueness can only be guaranteed if the medium is lossy as shall be shown
later. It is also guaranteed if lossy impedance boundary conditions are imposed.4

First we begin with the isotropic case.

1.1 Isotropic Case

It is easier to see this for lossy isotropic media. Then (1.12) simplifies to˚
V

[−jωµ|δH|2 + jωε∗|δE|2]dV = 0 (1.14)

For isotropic lossy media, µ = µ′ − jµ′′ and ε = ε′ − jε′′. Taking the real part
of the above, we have from (1.14) that˚

V

[−ωµ′′|δH|2 − ωε′′|δE|2]dV = 0 (1.15)

3Tensors are a special kind of matrices.
4See Chew, Theory of Microwave and Optical Waveguides.
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Since the integrand in the above is always negative definite, the integral can be
zero only if

δE = 0, δH = 0 (1.16)

everywhere in V , implying that Ea = Eb, and that Ha = Hb. Hence, it is seen
that uniqueness is guaranteed only if the medium is lossy. The physical reason is
that when the medium is lossy, a pure time-harmonic solution cannot exist due
to loss. The modes, which are the source-free solutions of Maxwell’s equations,
are decaying sinusoids.

Notice that the same conclusion can be drawn if we make µ′′ and ε′′ nega-
tive. This corresponds to active media, and uniqueness can be guaranteed for a
time-harmonic solution. In this case, no time-harmonic solution exists, and the
resonant solution is a growing sinusoid.

1.2 General Anisotropic Case

The proof for general anisotropic media is more complicated. For the lossless
anisotropic media, we see that (1.12) is purely imaginary. However, when the
medium is lossy, this same equation will have a real part. Hence, we need to
find the real part of (1.12) for the general lossy case.

1.2.1 About taking the Real and Imaginary Parts of a Complex
Expression

To this end, we digress on taking the real and imaginary parts of a complex
expression. Here, we need to find the complex conjugate5 of (1.12), which is
scalar, and add it to itself to get its real part. The complex conjugate of the
scalar

c = δH∗ · µ · δH
is6

c∗ = δH · µ∗ · δH∗ = δH∗ · µ† · δH
Similarly, the complex conjugate of the scalar

d = δE · ε∗ · δE∗ = δE∗ · ε† · δE

is
d∗ = δE∗ · ε† · δE

Therefore,

=m (δH∗ · µ · δH) =
1

2j
δH∗ · (µ− µ†) · δH

5Also called hermitian conjugate.
6To arrive at these expressions, one makes use of the matrix algebra rule that ifD = A·B·C,

then D
t
= C

t ·Bt ·At
. This is true even for non-square matrices. But for our case here, A

is a 1 × 3 row vector, and C is a 3 × 1 column vector, and B is a 3 × 3 matrix. In vector
algebra, the transpose of a vector is implied. Also, in our case here, D is a scalar, and hence,
its transpose is itself.
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=m (δE · ε · δE∗) =
1

2j
δE∗ · (ε− ε†) · δE

and similarly for the real part.
Finally, after taking the complex conjugate of the scalar quantity (1.12) and

adding it to itself, we have

˚
V

[−jωδH∗ · (µ− µ†) · δH− jωδE∗ · (ε− ε†) · δE]dV = 0 (1.17)

For lossy media, −j(µ − µ†) and −j(ε − ε†) are hermitian negative matrices.
Hence the integrand is always negative definite, and the above equation can-
not be satisfied unless δH = δE = 0 everywhere in V . Thus, uniqueness is
guaranteed in a lossy anisotropic medium.

Similar statement can be made as the isotropic case if the medium is ac-
tive. Then the integrand is positive definite, and the above equation cannot be
satisfied unless δH = δE = 0 everywhere in V and hence, uniqueness is satisfied.

1.3 Hind Sight

The proof of uniqueness for Maxwell’s equations is very similar to the proof of
uniqueness for a matrix equation

A · x = b (1.18)

If a solution to a matrix equation exists without excitation, namely, when b = 0,
then the solution is the null space solution, namely, x = xN . In other words,

A · xN = 0 (1.19)

These null space solutions exist without a “driving term” b on the right-hand
side. For Maxwell’s Equations, b corresponds to the source terms. They are
like the homogeneous solution of an ordinary differential equation or a partial
differential equation. In an enclosed region of volume V bounded by a surface
S, homogeneous solutions are the resonant solutions of this Maxwellian system.
When these solutions exist, they give rise to non-uniqueness.

Also, notice that (1.7) and (1.8) are Maxwell’s equations without the source
terms. In a closed region V bounded by a surface S, only resonance solutions
for δE and δH with the relevant boundary conditions can exist when there are
no source terms.

As previoulsy mentioned, one way to ensure that these resonant solutions
do not exist is to put in loss or gain. When loss or gain is present, then the
resonant solutions are decaying sinusoids or growing sinusoids. Since we are
looking for solutions in the frequency domain, or time harmonic solutions, these
non-sinusoidal solutions are outside the solution space: They are not part of the
time-harmonic solutions we are looking for. Therefore, there are no resonant
null-space solutions.
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1.4 Connection to Poles of a Linear System

The output to input of a linear system can be represented by a transfer function
H(ω). If H(ω) has poles, and if the system is lossless, the poles are on the real
axis. Therefore, when ω = ωpole, the function H(ω) becomes undefined. This
also gives rise to non-uniqueness of the output with respect to the input. Poles
usually correspond to resonant solutions, and hence, the non-uniqueness of the
solution is intimately related to the non-uniqueness of Maxwell’s equations at
the resonant frequencies of a structure. This is illustrated in the upper part of
Figure 2.

Figure 2:

However, if loss is introduced, these poles will move away from the real axis
as shown in the lower part of Figure 2. Then the transfer function is uniquely
determined for all frequencies, and uniqueness of the solutio is guaranteed.
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1.5 Radiation from Antenna Sources

The above uniqueness theorem guarantees that if we have some antennas with
prescribed current sources on them, the radiated field from these antennas are
unique. To see how this can come about, we first study the radiation of sources
into a region V bounded by a large surface Sinf as shown in Figure 3.

Even when n̂×E or n̂×H are specified on the surface at Sinf, the solution
is nonunique because the volume V bounded by Sinf, can have many resonant
solutions. In fact, the region will be replete with resonant solutions as one
makes Sinf become very large. The way to remove these resonant solutions is
to introduce an infinitesimal amount of loss in region V . Then these resonant
solutions will disappear. Now we can take Sinf to infinity, and the solution will
always be unique.

Notice that if Sinf → ∞, the waves that leave the sources will never be
reflected back because of the small amount of loss. The radiated field will just
disappear into infinity. This is just what radiation loss is: power that propagate
to infinity, but never to return. In fact, one way of guaranteeing the uniqueness
of the solution in region V when Sinf is infinitely large, or that V is infinitely
large is to impose the radiation condition: the waves that radiate to infinity
is an outgoing wave only, and never do they return. This is also called the
Sommerfeld radiation condition. Uniqueness of the field outside the sources is
always guaranteed if we assume that the field radiates to infinity and never to
return.

Figure 3:
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